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Abstract

The Allen activity index, originally developed for monitoring dingo populations, is statistically described as
a mixed linear model, from which a variance formula for the index is derived. The resulting formula
requires input of variance component estimates, the estimation of which is accomplished using restricted
maximum-likelihood estimation. An example is used to demonstrate the calculation of the variance
components and their use in the variance formula. Application of the variance formula substantially
enhances the quantitative practicality of this useful index of wildlife populations.

Introduction

A frequent problem in wildlife biology occurs when the population and/or density of the
animal of interest is impossible to accurately assess with current methods, or the logistical costs
of doing such an assessment are prohibitive. The development of an index that tracks changes in
the target population within appropriate time and geographic constraints can provide the
necessary information to make management decisions. Logistically more complex procedures
requiring difficult-to-meet analytical assumptions, such as capture-recapture models, can be
avoided. The use of tracking tiles for rats (e.g. Fiedler 1994), scent-post surveys for coyotes
(Roughton and Sweeny 1982), and the open-hole method for pocket gophers (Richens 1967) are
examples of population-indexing methods. Variance calculations for such indices are usually a
result of only the sampling plan and not inherent to index methodology itself.

Allen et al. (1996) recently introduced an activity index (Al) for assessing dingo (Canis lupis
dingo) populations, which is based on observing the number of animal intrusions (number of
sets of tracks) on each of a series of tracking plots in the area being assessed. Data are collected
from each tracking plot over consecutive days and the mean number of sets of tracks on the plots
is calculated daily for the measurable plots (i.e. plots not erased by the elements, cattle, vehicles,
etc.). The Al is then formed by calculating an overall mean from the daily means.

Allen and Engeman (1995) demonstrated the versatility and utility of this indexing method for
simultaneously monitoring the activity of a variety of species in addition to dingoes as the target
species. Its value for monitoring dingoes could lead to application on canid species world-wide.
Canids such as coyotes, foxes, dingoes, wolves, jackals and wild dogs are often in conflict with
human interests throughout the world, particularly with respect to depredation on livestock, but
also for transmission of diseases such as rabies and predation on endangered species (waterfowl,
kit fox, ferrets). In particular, interest in indexing coyote populations has existed for some time,
including ten consecutive years where the scent-post method (Roughton and Sweeney 1982) was
applied in a west-wide coyote survey in the United States. This and other methods have met with
varying degrees of utility and success (Knowlton 1984). Its versatility for monitoring multiple
species at the same time also holds potential for extensive application. Here, too, the coyote, like
the dingo, is a subject of great interest, both for evaluating predator—prey relationships or
examining interactions with other canids such as foxes or wolves (e.g. Gese ef al. 1996).
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One drawback to the utility of the Al (and many other indices as well) has been the lack of a
variance formula. Approximate calculation methods, such as calculating a variance estimate by
subsetting the data, provide rudimentary, but potentially biased estimates of variance for the
index over all data. Carrying methods such as this forward to resampling plans such as bootstrap
or jackknife methods (e.g. Efron 1982) are computationally arduous, but may produce credible
variance estimates. Those methods also would be unnecessary and it would be easier for the
investigator if a variance formula for Al existed. Here we derive a formula for a variance
estimate of Al

Methods
Data structure

We first simplify the formulation of the Al. As originally defined (Allen et al. 1996), data collection was
repeated on each plot on consecutive days until the cumulative mean across plots and days changed by less
than 10% from the previous day’s calculation. In nearly all of our dingo trials over the last five years we
have found that this criterion was met after monitoring the tracking plots for four days. Therefore, we
presume that the number of consecutive days for monitoring tracking plots will have been fixed in advance
as part of the study protocol. We do not specify this optimal period, as different species may be best
monitored for different periods, or logistics for some situations may determine the monitoring time frame.

We now formally define in statistical terms the data structure from which the Al is calculated. Assume
that p plots will be observed for tracks on each of d days. Let x;; represent the number of sets of tracks found
on the ith plot on the jth day. We now write a mixed linear mode! (e.g. McLean et al. 1991; Wolfinger et al.
1991) to describe the x;;.

xy=p+Pi+Ditey

The term u is the overall mean number of sets of tracks per plot per day for the area being assessed. D, is
a random effect due to the day on which an observation was made with j=1,2,3 ... d, and d is the number
of days the plots are monitored. P; is a random effect due to the ith plot with i =1, 2,3 ... p; = p
representing the number of plots contributing data on the jth day. In practice it might be unreasonable to
presume that no stations would be rendered unobservable by the elements, or other factors out of the control
of the investigator, for cach of the d days. Thus, we have allowed the number of plots used in the
calculations to differ between days. The e represents random error associated with each plot each day.

We need to also make biologically realistic assumptions concerning the distribution of the random
effects prior to calculating the variance of Al. Many animals, including the canids for which the Al was
originally targeted, roam distances greater than those by which the tracking plots are likely to be separated.
Also, plots that are closer together probably share more characteristics that relate to an animal leaving tracks
than do more distantly separated plots. Therefore, we do not consider the number of sets of tracks observed
on the plots to be independent. Similarly, we cannot consider environmental and climatic conditions to be
unrelated across days. Hence, we also do not consider the number of sets of tracks observed on each day to
be independent. The ey, as random observational noise, are considered independent and identically
distributed with mean = 0 and variance = o 2.

Variance estimation

The calculation of the Al can now be written in terms of the Xy as
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which can be equivalently written as

1 P Py
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If we let the var(P)) = sz and var(D)) = a2, then using the definitions and assumptions given in the
subsection on data structure, the covariance structure below follows, with the nonzero elements resulting
from the lack of independence among observations:

cov(xyj, Xpj) = 0p + 542 + 8.2, if i=i' and j=j'
a2 if i=i’ and j#j’
42 if i#i’ and j=j'
0, if i#i’ and 4",

Substitution into the quadruple summation of the variance formula produces the following result:
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Note that if all p of the tracking plots provide observations each day, then this formula simplifies to

0_2 o2 2 0'2
__P d
var(AI)gquul sample size — + +—
p d pd

Estimation of var(Al) requires variance component estimates for 0,,2, o/, 0,2, which can be produced by
applying the x;; as observations in a linear mixed-model structure and using a program such as SAS PROC
MIXED or PROC VARCOMP (SAS Institute 1992, 1996, 1997), each with a restricted maximum-likelihood
estimation procedure (REML), to produce the variance component estimates.

Example

The data in Table 1 were collected for assessing a dingo population near Mt Owen in south-
west Queensland. A 50-km transect consisting of p = 50 plots spaced every kilometre was
monitored for d = 4 consecutive days. The average number of sets of tracks per plot were 0.94,
0.82, 1.30, 0.82 for days 1, 2, 3, 4 respectively. The Al index value was calculated as 0.97.
Application of PROC MIXED or VARCOMP in SAS produces variance component estimates
of 0,2 = 0.0124, 52 = 0.0018, and ¢,2 = 0.0338. We can use the equal-sample-size formula
because all plots were measurable on each of the four days, i.e. p; = p, = p; = py = 50 for Days
1-4. Insertion of the above information into the equal-sample-size equation for var(Al) yields:

var (Al) = 0.0124/50 + 0.0018/4 + 0.0338/200 = 0.000867
standard error (s.e.) = 0.029
coefficient of variation (c.v.) = 0.030.

Appendix [ presents the code for using SAS PROC VARCOMP and PROC MIXED to
calculate the components of variance for this example.

Although the trial design from which our example data came was largely determined by the
geography of the station and logisitics, we consider the effects on the results had we only been
able to observe plots for three days instead of four, or only observe 38 plots instead of 50 (a
similar reduction in observations). The Al for the 25% reduction in days or plots are, respectively
1.02 and 1.07, and the associated variance estimates are, respectively 0.00199 and 0.003616.
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Table 1. Number of sets of dingo tracks observed on 4 consecutive days from 50 plots spaced 1 km
apart along a transect in south-west Queensland

Plot # Day 1 Day 2 Day 3 Day 4 Plot# Dayl Day 2 Day 3 Day 4
| 1 1 2 6 27 1 0 0 0
2 1 1 3 5 28 0 3 2 1
3 3 1 3 4 29 4 2 0 0
4 1 1 4 1 30 3 0 0 3
S 3 0 4 3 31 5 0 0 0
6 4 0 4 0 32 5 0 2 0
7 1 0 4 0 33 2 1 3 0
8 0 1 0 0 34 4 0 2 1
9 0 0 1 0 35 3 0 0 1
10 0 0 0 0 36 0 2 2 0
11 0 1 1 0 37 0 1 3 1
12 0 2 0 0 38 0 0 0 1
13 0 2 1 0 39 0 0 1 0
14 0 0 2 0 40 0 1 2 1
15 0 1 2 0 41 0 1 1 1
16 0 2 0 1 42 1 1 1 1
17 0 0 0 1 43 1 1 0 4
18 0 2 3 0 44 0 1 0 0
19 0 1 3 0 45 0 0 0 1
20 2 0 2 0 46 0 0 0 1
21 0 4 1 0 47 0 2 1 2
22 1 0 1 0 48 0 1 0 0
23 0 0 0 0 49 0 2 0 0
24 0 0 1 0 50 0 0 1 1
25 0 2 2 0

26 1 0 0 0 Mean 0.94 0.82 1.30 0.82

These estimates are within 10% of the Al calculated from the full data set, but the variance
estimates were 2.3 and 4.2 times larger. As would be expected from the variance component
estimates, plots had a greater effect on estimation than days, although both were important.

Discussion

There are several important points to make relative to the derivation, calculation and
application of the variance formula for the Al First, the Al is unusual among activity indices in
that its implementation defines a data structure that is well-described by a linear mixed model.
Use of the model structure and minimal assumptions concerning the relationship among plots
through space and time permitted the derivation of a variance formula that could provide a
measure of precision each time an index is calculated.

Beyond the derivation of the variance formula, we also demonstrated current methods
(REML estimation) and software (SAS PROC MIXED and VARCOMP) for estimating the
variance components that are needed in the Al variance formula from mixed linear models.
Many ‘(old) standard” statistical texts (e.g. Snedecor and Cochran 1989; Sokal and Rohlf 1995)
present variance component estimation in the context of method-of-moment estimation from
analysis of variance tables. This approach has severe weaknesses (e.g. Searle er al. 1992),
including the potential for negative variance component estimates. With current capabilities of
personal computers, the more appropriate methods for estimating variance components from
mixed linear models can be accomplished on the desktop using iterative procedures such as
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maximum likelihood or the more preferred REML estimation (Searle et al. 1992). The text by
Searle ef al. (1992) is generally accepted as the current ‘standard’ for variance component
estimation, while the mixed model discussions in the SAS/STAT manuals (e.g. SAS Institute
1996) provide additional useful reference material.

The variance formula allows the quality of a calculated Al to be assessed on the basis of
precision using variance, standard error and coefficient of variation. The calculation of the
variance components used in the variance formula also provides the investigator with useful
information for planning future studies, as the relative contributions of plot-to-plot variation and
day-to-day variation can be examined to optimise the combination of days and plots for the next
assessment. Conceptually, this approach is similar to that of Link et al. (1994), in the much
different context of bird counts, as they examine the effects of variability due to the inexactness
of surveying wildlife populations. They conclude that replication of counts within each survey
site generally should receive less emphasis than acquiring additional survey sites, although they
indicate, as we have, that costs and logistics could be the determining factors in setting up a
design. Rather than two, we estimated three sources of variation for the Al variance formula and,
for our particular example, we found plots had a greater effect on estimation than days.
Although both sources of variation impacted estimation, if a logistical choice had to be made
between adding more plots or adding more days of observation, then the addition of more plots
would receive greater emphasis.

If the Al is being used to monitor populations within an area at different times, or among
different areas, then statistical comparisons of the Al would be of interest, especially when
looking at topics such as dingo populations before and after a control program, or populations in
areas with and without control. This is easily accomplished by calculating the Als to be
compared and their respective variance estimates, followed by the application of the standard z-
test for comparing means, or equivalently, the Wald statistic (e.g. Mantel 1987). The z statistic
also can be used to calculate confidence intervals for the Al

Caughley er al. (1977) demonstrated the difficulties and assumptions one must make to
produce a variance estimate when the sampling methodology does not provide the theoretical
basis from which a variance can be derived directly. Their challenge was even greater due to
their use of aerial survey methods that provide an excellent population index to directly estimate
the harvested proportion of kangaroo populations. Fortunately, the Al data structure permits a
straight-forward variance estimation procedure, although making the jump from an index to
actual population estimates also would require additional measurements to develop ‘correction’
factors. Caughley et al. (1977), after conducting a meticulous study to address their objectives,
used the information generated to estimate the sampling intensity required to achieve a desired
precision for a future estimate. If the day and plot variance components have been estimated
from an earlier application of the Al and estimation of its variance, then the number of days and
plots required to produce a desired precision for a similar future situation can be estimated by
examining the variance formula (equal-sample-size version) as a response surface question with
days and plots as the independent variables and the variance as the dependent variable.
Obviously, with two independent variables and one dependent variable no single solution would
exist, but might be optimised within the constraints of the experimental resources. As indicated
previously, it has been our experience that experimental logistics and resources are usually the
most important influences on sampling design.

Definition of the observational structure of the Al in terms of a linear mixed model has led to
increased quantitative practicality for applying this highly useful (Allen and Engeman 1995;
Allen et al. 1996) indexing procedure. A formula for the variance of the Al was derived. Next,
the variance components needed for the Al variance formula can be estimated accurately
through REML procedures applied to the mixed-model data. In addition to their use in the Al
variance formula, those variance components can be used to optimise future applications of the
Al Lastly, statistical comparisons among Al obtained at different times or from different places
can be conducted.
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Appendix 1.  SAS code for calculating variance components first using

PROC MIXED, and then using PROC VARCOMP, where the data are

contained in a file named TRACKS.DAT formatted into 3 columns for
plot number, day number, and observed number of sets of tracks

Code for PROC MIXED: Code for PROC VARCOMP:

data a; data a;

infile tracks.dat; infile tracks.dat;

input plot day tracks; input plot day tracks;

proc mixed method = reml; proc varcomp method = reml;
class plot day; class plot day;
model tracks = ; model tracks = plot day/fixed = 0;
random plot day; run;

run;
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